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The best known exception to the Heine-Sampson and Bieber-Gauthier arguments for ordering effects in
transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, whose phase diagram is similar to
that of the CuAu system. Using neutron scattering we have investigated the local atomic order in a null-matrix
62Nio'52Pt0'48 single crystal. In a null-matrix alloy, the isotopic composition is adjusted so that the average
neutron scattering length vanishes (®*Ni has a negative scattering length nearly equal in magnitude to that of
Pt). Consequently, all contributions to the total scattering depending on the average lattice are suppressed. The
only remaining components of the elastic scattering are the short-range order (SRO) and size effect terms.
These data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as
the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss
theory, we obtain the effective pair interactions (EPIs) between near neighbors in the alloy. The results can be
used by theorists to model the alloy in the context of the electronic theory of alloy phase stability, including a
preliminary evaluation of the local species-dependent displacements. Our maps of V(q), the Fourier transform
of the EPIs, show very similar shapes in the experimental and reconstructed data. This is of importance when

comparing to electronic structure calculations.
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I. INTRODUCTION

The NiPt alloy system has been the subject of intensive
theoretical investigation for the past two decades for two
main reasons. First, it does not follow the Heine-Sampson'
and Bieber-Gauthier? arguments (similar to the Hume-Roth-
ery’ electron per atom ratio rules) for ordering effects in
transition metal alloys. Second, in the NiPt alloy, Pt segre-
gates toward the (100) and (111) topmost surface layers,
while there is reversed segregation at the (110) surface,
which appears to be nearly completely covered by Ni.*> This
phenomenon relates to the alloy’s desirable catalytic proper-
ties.

There are several theories about the origins of ordering in
NiPt alloys. Bieber and Gauthier? suggested that magnetic
effects were responsible for such behavior, but in NiPt the
ferromagnetism decreases very rapidly as the Ni concentra-
tion decreases leaving increasingly weak paramagnetism.
With a Ni concentration of 50% or more, this magnetization
vanishes, and the argument would seem to be considerably
weaker. Treglia and Duscastelle® indeed found that spin-orbit
coupling favors ordering in NiPt, but the magnitude is not
sufficient to account for the observed ordering temperatures.

Using the Korringa-Kohn-Rostoker coherent potential ap-
proximation electronic-structure methods,” Pinski et al®
found that relativity was not responsible for long-range or
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short-range order, because relativistic effects predominantly
increase s-electron cohesion, such that the ordering energy is
not significantly affected. Moreover, they found that charge
transfer does not play a role because Ni and Pt have similar
electronegativities and thus each atom in the alloy remains
essentially charge neutral. More importantly, they found that
the size disparity between Ni and Pt dictates the relative
bandwidths in the average alloy lattice (related to off-
diagonal disorder), leading to low-energy t,, hybridization
states and a strong ordering tendency due to band-filling of
only those new states. In fact, the predicted transition tem-
perature was 632 °C compared to the observed 645 °C. This
size-related effect on the electronic structure was argued as
the origin of Hume-Rothery’s size-effect rule because in-
creasing the “size” fictitiously by increasing the average lat-
tice saw the hybridization states vanish, along with the short-
range order.

As such, similar band-filling mechanisms argued by
Heine and Sampson1 are in effect, but are counter to the
Bieber and Gauthier? argument that size disparity accentu-
ates phase segregation. Lu et al.” also argue that size plays a
dominant role, but, while they claim that s-electron cohesion
is responsible for ordering, they considered only the forma-
tion energy, not the ordering energy. In addition it has been
found that relativistic effects in low coordination 5d ele-
ments reduce the atomic mismatch with respect to the pure
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3d elements'®!? and this was later taken into account by

Wang and Zunger'3 to argue that these relativistic effects
reduce the elastic strain energy.

In this paper we describe a neutron scattering study of
short-range order (SRO) and the size-effect (SE) in a NiPt
alloy, as well as the effective pairwise interactions (EPIs)
that quantify the ordering tendency. In principle, the EPIs
can be of purely electronic origin or they can arise from a
combination of electronic and strain contributions.'* In Sec.
IT we briefly review the diffuse scattering theory applied to a
null-matrix alloy and we also discuss the effective pairwise
interactions. In Sec. Il we describe the sample and the in-
strument configuration used for this work. Section IV con-
tains a discussion of the resulting numerical values of the
structural parameters obtained in the experiment. These in-
clude EPIs and important information on the apparent devia-
tion of the NiPt nearest neighbor separation from the value
given by the average lattice parameter and Poisson ratio in
the ordered state. In Sec. V we briefly discuss neutron scat-
tering measurements on a natural abundance Nij 5,Pt( 45 Crys-
tal. We conclude with a brief description of further work in
progress.

I1. DIFFUSE NEUTRON SCATTERING

In general, the total scattering from a binary solid solution
can be separated into Bragg scattering which yields informa-
tion about the average lattice and diffuse scattering associ-
ated with local deviations from the average structure. The
diffuse scattering can be further divided into a component
arising from the SRO which is related to the concentration-
concentration correlation function, the SE which is related to
the concentration-static displacement correlation function,
and the quadratic diffuse scattering (QDS) which is com-
posed of time-dependent (inelastic) and time-averaged (elas-
tic) terms, and refers to both the thermal (TDS) and higher
order terms that arise when the diffuse intensity is expanded
in terms of the static displacements. An elegant discussion of
the relationship between the various correlations and the
components of the diffuse intensity can be found in Dietrich
and Fenzl'>!% and in Reinhard et al.'” The expression for the
total intensity can be written as

Irotat = Irage + Isro + Isg + Lops- (1)

In the present study the experiment is designed to isolate the
SRO and SE components of the diffuse scattering which will
be analyzed to determine the local atomic environments as
well as the EPIs. In order to minimize contributions from the
average lattice (Bragg) scattering and QDS and at the same
time enhance the SRO and SE scattering, we chose an alloy
very near the null-matrix composition. The single crystal was
made from the isotope ®*Ni (scattering length bex;=-8.7
fm) and Pt (scattering length hp,=9.6 fm) (1 fm=1Xx10""
m), with respective concentrations ce2;=0.52 and cp=0.48,
i.e., chemical composition **Ni 5,Pt;4g, such that the mean
scattering length (b)=(cnibni+cpdp)=0.08 fm was ex-
tremely small (ideally zero) as compared to the scattering
contrast 6b=|by;—bp|=18.3 fm; Bragg scattering and domi-
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nant terms of the QDS are proportional to the square of the
mean scattering length, whereas the SE and SRO scattering
depend on powers of the contrast. For a crystal with the same
chemical composition made with natural nickel (by
=10.3 fm), (b) is 9.96 fm and &b is 0.7 fm. Thus the SRO
intensity per atom is about 700 times larger for the isotopic
crystal than for the natural crystal. Furthermore the ratio
Sb/{b) is 218 for the isotopic crystal, 0.07 for the natural
crystal, and 0.96 for x rays (using atomic numbers instead of
scattering lengths). These numbers suggest that an x-ray ex-
periment might reveal useful information but the beauty of
the null-matrix method with neutrons is that the diffuse scat-
tering can be measured very close to Bragg points because
the Bragg peak intensity is essentially zero. The remaining
components of the inelastic scattering not suppressed at the
null-matrix composition were eliminated using the time-of-
flight technique described in Sec. III. Thus the expression for
the total scattering can be reduced to

It =Isro + Ise- (2)

The null-matrix technique was first used by Mozer et al.'®

followed by Vrijen and Radelaar,'” and Wagner et al.?’ with
CuNi powder samples. This is, to our knowledge, the first
use of the null-matrix technique to study a single crystal
alloy.

The SRO component of the diffuse intensity, gz, yields
information about the distribution of atoms on the lattice
sites. Consider a sample that consists of two types of atoms,
A and B, randomly located on a crystal lattice. The atomic
concentrations are ¢, and cg (c4+cz=1), and the total num-
ber of atoms is N. In this case Igz, is given by the Laue
monotonic scattering expression®!-??

Isro =1 aue = Neacg(by — bp)?, (3)

where b, and by are the neutron scattering lengths of A and
B atoms. If we introduce local concentration correla-
tions,?!~?’ the distribution of atoms will not be completely
random. For example, given a random distribution the prob-
ability of finding a B atom as the nearest neighbor of an A
atom is simply cpz. However, if there is a preference for A
atoms to have B atoms as their first neighbors, the probability
of finding a B atom as the first neighbor of an A atom is
greater than cp. Concentration correlations modulate the
Laue intensity given in Eq. (3) and can be expressed in terms
of Fourier components such that for a cubic lattice the inten-

sity is given by?!1?2
m(n)
Isgo=Neycp(by—bp)* 2 aln) 2, Q70 (4)
n k=1

In this expression Q is the scattering vector, r(nk) connects
an arbitrary (A or B) atom at the origin to the kth atom in the
nth shell of neighbors, and m(n) denotes the number of at-
oms in that shell. (Neighbors at the same distance from the
origin but with different symmetry have different shell indi-
ces.) The Warren-Cowley SRO parameters?!?? are directly
defined in terms of the occupation probabilities, as follows:
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where p4(n) is the probability of finding an atom of type A in
the nth shell of neighbors surrounding an atom of type B and
pp(n) is the probability of finding an atom of type B in the
nth shell of neighbors surrounding an atom of type A. For the
random distribution a(0)=1 and a(n)=0 for n>0. Substitut-
ing into Eq. (4) we recover Eq. (3).

The SE scattering is associated with the mean interatomic
displacements.?? If r(n) is the mean distance between an
atom at the origin and its neighbor in the nth shell, and 7/ , is
the corresponding mean distance for atoms of type A, with
similar definitions for 7, and rpz, we introduce fractional
displacements €, ,, €5, and €, as follows:

ria=rn)(1+€i,), rap=rn)(1+€;p),

rpg=r(n)(1 + €gp). (6)

The general expression for the size-effect intensity, devel-
oped by Borie,?®? is then given by

m(n)

Lsp =l Y(n) 2 iQ - 1(nk)e’ T, )
n k=1

where the size-effect parameter for the nth shell is

1
v(n) = <bB_bA>|:_bA(E_Z+ a(n))efm

+ bB(@ + a(n)) 4;3] . 8)

Ca

For each shell the average lattice distance must be equal to
the weighted average of the separate interatomic distances. It
follows that

| E—A+a(n) ?+a(n)
_ Dcp A
€hn = 2| 1-a(n) €iat 1 - a(n) s | ©)

It is important to note that in Borie’s treatment r(n), € and
vy are vectors whose Cartesian components can be retrieved
from the data once we have completed an additional experi-
ment, namely x-ray scattering from a normal Nigs,Ptg4g
crystal collecting data throughout a symmetry volume. This
study is underway, using a flat extended-face crystal pre-
pared in Jiilich, Germany. In Egs. (6)—(9) we only consider
the radial components of r(n), € and 7. This is not a severe
simplification for cubic crystals though there can be signifi-
cant deviations in crystals with selected soft modes, but that
is not the case here. For a complete discussion of these mat-
ters, and of the equivalence of the Dietrich-Fenzl and Borie
theories with regard to the SRO, SE, and QDS parameters
that can generally be extracted from diffuse scattering data
(of course, including the null-matrix case), we refer the
reader to the original papers'>!0282% and to Reinhard et al.'’

The SRO and SE intensities are also modified by the ther-
mal vibration of the atoms through a Debye-Waller factor
(DWF),% ¢™. The DWF is a function of |Q| and of the shell
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index n because near neighbors experience smaller relative
displacements than distant neighbors. Introducing separate
DWFs for each type of atom we rewrite Egs. (4) and (7) as

Isgo+ Isp = Neacp X, (bpe™4 — byeMs)?

n
m(n)

x 2 [a(n) + 1(n)iQ - r(nk)]e'2™™ . (10)
k=1

The SRO is directly related to the EPIs. Using the SRO,
especially above a first-order transition such as ours, these
EPIs can be evaluated using a mean field representation,3!-3
where the Ising-like Hamiltonian is written as

1 A A B B B B A
H= EE (Voo + Viiojal, + Vil o), + ofo))].
JJ

(11)

If an atom of type A is on site j the projection operators
a?:l and af=0. If an atom of type B is on site j, af;‘=0
and o‘JB =1. Note that while this is a traditional Ising Hamil-
tonian, several neighbors contribute and the EPIs have sep-
arate values for each shell. Using the Flinn*® operators
(known as spin-deviation operators in magnetism),

7;=2(0} —cy) =2(cy-0)), (12)
Eq. (11) yields:

1
Ji'
with
1 A B B
Vip =3(Vij + Vi =2Vy). (1

The V;;» are analogous to the exchange interactions in an
Ising magnet: V>0 denotes ordering (antiferromagne-
tism), whereas V;i»<0 denotes clustering (ferromagnetism).
Representing the EPIs, they are concentration and tempera-
ture dependent due to the varying atomic arrangements be-
tween j and j’.3” The sums over j and j’ can be replaced by
a sum over the vectors r(nk) that connect an arbitrary origin
atom to its neighbors. We shall henceforth use this simplified
notation.

There are many methods to obtain the EPIs from the SRO
parameters. The most commonly used are the inverse Monte
Carlo (IMC) method,?**738 which finds the V’s that are con-
sistent with the simulated structure using occupational
probabilities;’® the Krivoglaz-Clapp-Moss (KCM) approxi-
mation’!3* which uses a mean-field approach to determine
the EPIs; and the y-expansion method (GEM), developed by
Masanskii (now Tsatskis), Tokar et al.,*® which is an exten-
sion of the KCM approximation in the spirit of the spherical
model, and assumes that the pair correlation function falls off
exponentially with the interatomic distance r(n), giving these
methods similar results.>> We will use the KCM and its ex-
tension (GEM). Using Eq. (4) we define the intensity I(q) as
before, but now in units of the Laue intensity [Eq. (3)]; q
=Q-G is a wave vector of the fluctuation spectrum, Q is the
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scattering vector, and G is a reciprocal lattice vector. The
intensity is

I(q) = 2 a(n)e' ™™™, (15)
nk
and the Fourier transform of the EPI is
(16)

V(g) = X V(n)ed™h,
nk

Krivoglaz,>! and Clapp and Moss®? independently related

these equations writing

1
1+2c4c3B8V(q)’

where B=(kgT)™". [Originally Clapp and Moss used a differ-
ent numerator obtained from the condition that the integral of
the diffuse scattering over a Brillouin zone must be a con-
stant, namely 1.00 in Laue units. Another normalization pro-
cedure used the condition @(0)=1.00. Krivoglaz derived the
expression in Eq. (17).] For cubic lattices, Masanskii et al.*"
obtained the following GEM result in terms of the approxi-
mate KCM result:

*M(q) = (17)

VOEM () = VKM () 1 5.

25 (18)

with
3 =Aa(1)?+Ba(1)’; 3,3=Ac(2,3)%

3,=0 (n>3), (19)

where

(h k 0) Plane
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_ (1- 20,4)2.

A _ (1 -6c4cp)—3(1-2c,)*

33
6c,cp

. (20)

k)

22
2ccp

III. EXPERIMENTAL ISSUES

The 62Ni0.52Pt0.48 single crystal was grown at the Max-
Planck-Institut fiir Metallforschung-Stuttgart. Grown as a
cylinder with a diameter of 4 mm and a length of 15 mm, it
shows a homogeneous degree of perfection with a local mo-
saicity better than 0.2°, measured using a 660 keV gamma
diffractometer. The thermal treatment of the crystal involved
extended anneals from 1350 °C, slowly decreasing to
700 °C, and then quenching into ice water to maintain the
disordered phase.

In a scattering experiment the shapes of the diffuse peaks
are mainly determined by the occupational probabilities of
the atoms, i.e., the SRO (for the moment ignoring the
anomalously small asymmetric SE scattering as compared
with alloys with size disparities similar to that of NiPt, such
as CuAu*!). Since these probabilities are temperature depen-
dent we can determine the equivalent temperature from
which the sample was quenched (the “fictive” temperature)
by examining the shapes of the diffuse peaks at different
temperatures. To this end we performed at-temperature scans
at the high flux isotope reactor (HFIR), Oak Ridge National
Laboratory, using the HB-3 triple axis spectrometer and a
high temperature furnace. The objective was to find the tem-
perature at which the width of the (001) diffuse peak
matched that of the diffuse peak measured with the sample
quenched to room temperature. Measurements were made
at 1000 °C, 900 °C, 800 °C, 700 °C, 675 °C, 660 °C,
655 °C, and 25 °C. At each temperature the (001) diffuse

(h h 1) Plane

0.1

1.1

8.0

FIG. 1. (Color) 62NiO'SZPtO/m experimental maps of the diffuse scattering intensity. The intensity scale is logarithmic. The tiny dots are the
very weak Bragg reflections. In the right-hand plot, very weak powder scattering from the sample post is evident. With respect to the Bragg
dots in the (hhl) plane we clearly see the SE-induced shifts of the diffuse peaks.
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TABLE 1. 62Nio'sthOAg SRO parameters. Note that the follow-
ing groups of shells have the same radius: (9,10), (14,15), (18,19),
(20,21), (22,23), (29-31), (33-35).

Shell number n Shell index Imn a(n)
0 000 1.022(23)
1 110 ~0.114(4)
2 200 0.117(6)
3 211 ~0.012(4)
4 220 0.069(4)
5 310 -0.017(3)
6 222 0.038(3)
7 321 -0.015(3)
8 400 0.010(6)
9 330 —-0.015(4)
10 411 —-0.007(4)
11 420 0.029(4)
12 332 —-0.005(1)
13 422 0.015(3)
14 510 0.002(4)
15 431 0.000(3)
16 521 —-0.010(4)
17 440 0.003(4)
18 530 —-0.003(3)
19 433 —-0.002(3)
20 600 —-0.013(8)
21 442 —-0.001(4)
22 611 0.004(3)
23 532 0.001(3)
24 620 0.010(3)
25 541 0.001(3)
26 622 0.004(3)
27 631 —-0.005(3)
28 444 0.018(8)
29 710 —-0.002(3)
30 550 —-0.010(6)
31 543 —-0.006(3)
32 640 0.010(3)
33 721 —-0.001(0)
34 552 0.005(3)
35 633 0.005(4)

peak was fitted using a Voigt function. From a plot of the
width of the peak as a function of temperature we obtained a
fictive temperature of 679 °C for the quenched crystal. (The
equilibrium ordering temperature is ~645 °C.)

The neutron scattering measurements were performed us-
ing the disk chopper spectrometer (DCS) at the National In-
stitute of Standards and Technology’s Center for Neutron
Research (NCNR). The DCS is a multichopper time of flight
spectrometer that is mostly used for studies of low-energy
excitations and diffusive motions in materials.*>* The chop-
pers deliver monochromatic pulses of neutrons to the sample
and the times of flight of the scattered neutrons are used to
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calculate energy transfers knowing the sample-detector dis-
tance which is 4010 mm, common to all detectors. From the
scattering angle and the orientation of the sample with re-
spect to the incident and scattered beams, the wave vector
transfer Q can also be calculated. Since the desired diffuse
scattering is elastic, the intensity in any given detector was
obtained by summing the counts over time channels either
side of (and including) the elastic time channel and within
the experimentally determined range of the instrumental
resolution function.

The DCS detectors are arranged in three banks with their
centers located above, below, and in the scattering plane. To
simplify the correction for vertical resolution, we only in-
cluded the 325 detectors in the middle bank. Scattering
angles for this bank range from —30° to —5° and from 5° to
140°. Since the height of the detectors is considerable
(400 mm) the vertical resolution at each |Q| must be taken
into account.

A critical aspect of the diffuse scattering data analysis
requires conversion of the raw intensity into appropriate
units and correcting the data for vertical resolution in order
to obtain and interpret the SRO and SE structural parameters
in a plane of reciprocal space. The complexity of the correc-
tions depends on the accuracy required. We will describe our
vertical integrated diffuse intensity calculations using a finite
element method and corrections for sample absorption in a
future publication. A standard vanadium normalization was
used to express raw intensities in Laue units [Eq. (3)].

The sample was glued to an aluminum post coated with
neutron-absorbing Gd,0O; paint, and mounted within an
evacuated aluminum vessel to minimize air scattering. An
oscillating radial collimator was used to reduce scattering
from the vessel. Room temperature data were collected in the

[001] and [110] [i.e., the (hk0) and (hhl)] scattering planes
using a wavelength of 1.8 A. In each case, having first
aligned the sample, data were collected for a series of crystal
orientations in steps of 1°, more than sufficient to cover the
requisite range in angles (which depends on the scattering
plane). Typical counting times were of order 30 min per
crystal orientation.

IV. RESULTS

Normalized elastic scattering intensities are shown in Fig.
1. As expected there is no evidence of QDS intensity. The
Bragg peaks from normal NiPt are several orders of magni-
tude larger than the diffuse scattering but there are no Bragg
peaks in a null-matrix crystal. A small deviation in the com-
position of our crystal from the null-matrix condition pro-
duces very small Bragg peaks (which are useful for align-
ment purposes). We clearly see the SRO diffuse peaks,
asymmetrically modulated due to the SE scattering.

Using singular value decomposition** and Eq. (10), with
DWFs computed from the mean displacements that result
from our fits, (u;)=0.00369 A% and (up,)=0.00395 A2, we
fitted 35 SRO parameters and 15 SE parameters. The values
of (uZ;) and (up,) are nearly equal and therefore close to the
mean value for Nij 5Pt 45. Their effect on the SRO and SE
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TABLE 1I. 62Ni0'52Pt0.48 SE parameters. See the caption to
Table I.

Shell number n Shell index [mn v(n)
1 110 0.00532(26)
2 200 —-0.00129(6)
3 211 —-0.00098(3)
4 220 —-0.00022(1)
5 310 0.00046(2)
6 222 —-0.00007(0)
7 321 0.00008(0)
8 400 —-0.00023(1)
9 330 0.00022(1)
10 411 —-0.00013(0)
11 420 —-0.00005(0)
12 332 0.00007(0)
13 422 —-0.00004(0)
14 510 0.00008(0)
15 413 —-0.00002(0)

parameters is small. For the data analysis we chose the real-
space least-squares method over other treatments (e.g.,
Borie,® Dietrich and Fenzl,'>'® or Krivoglaz®!) because least
squares allow us to take into account statistical errors and
correlations between the SRO and SE parameters. The
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FIG. 2. 62Ni0'52Pt0A48 SRO and SE parameters. The SRO param-
eters a(n) oscillate about zero, indicating a tendency toward order-
ing for the first several neighbors. The SE parameters y(n) vanish
quickly beyond the fifth neighbor shell. See the caption to Table I.
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FIG. 3. (’zNiO_SZPtOAg reconstructed and experimental line scans,
shown as solid lines and points, respectively, along the (k3.1 0)
(upper panel) and (0k 0) (lower panel) directions. One can clearly
see the asymmetric SE addition to the symmetric diffuse SRO
peaks.

Q-space analysis of Krivoglaz,3! while more transparent to
view in terms of SRO, SE, and QDS, is also (currently)
unable to retrieve the separate species-dependent displace-
ments in the SE and is not applicable to our null-matrix
condition. The least-squares method also permits the use of a
more limited range of Q space. The reconstructed data are
essentially identical to the experimental data (Fig. 1). The
error bars were calculated using the correlation matrix ob-
tained with the SVD algorithm.**

The SRO parameters [Table I and Fig. 2(a)] reveal a ten-
dency to ordering. Negative SRO parameters mean a prefer-
ence for “unlike” neighbors whereas positive values indicate
a preference for “like” neighbors. Alternating negative and
positive values mean that there is preference to ordering. The
Oth SRO parameter, «(0), is 1.02, close to 1.00 which is
required but rarely obtained. This result represents an excel-
lent check on our removal of extraneous scattering and on
our normalization procedure. As the shell number n in-

104115-6



NEUTRON SCATTERING STUDIES OF SHORT-RANGE...
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Experiment

FIG. 4. (Color) Reconstructed and experimental data for 62NiO_SZPtMg in the [110] plane, i.e., the (hhl) plane. The SE intensity, expressed
in Laue units, is plotted on a linear scale. The SE parameters were experimentally obtained and then used to create the reconstructed data.
The experimental data were obtained by subtracting the SRO scattering (presented as solid black contours) from the original data. The SRO
maximum intensity is about six times the SE maximum intensity, revealing the SE scattering as an asymmetric “modulation” of the SRO
peaks. The partial (yellow) ring in the experimental data comes from the Al post holding the crystal.

creases, the SRO parameters decrease and the probability of
finding a neighboring atom becomes essentially equal to the
random value given by the composition; i.e., the intensity is
given by the Laue expression for the more distant shells. It is
perhaps interesting that several values of a(n) are larger in
magnitude than expected. For example a(16) and a(28) are
well outside the error bars but we do not have any explana-
tion for these features and we cannot eliminate the possibility
that errors originating with detector length have not been
completely corrected. The correlation length was estimated
from the radial diffuse peak width at half-height, which gave
a value of 5.83 A, equivalent to 1.58 lattice constants.

The SE parameters [Table II and Fig. 2(b)] are large for
the first three neighbors but decay faster than the SRO pa-
rameters. The SE scattering modulates the SRO scattering,
producing asymmetric diffuse peaks as shown in Fig. 3. It is
not possible to extract individual Ni-Ni, Ni-Pt, and Pt-Pt dis-
placements from the SE parameters, but linear combinations
can be obtained using Egs. (8) and (9). For nearest neighbor
sites we obtain 0.005 32=0.461ey;.n;+0.424 €pp, and ey;.p;
=—0.435€y;.ni—0.363€pp;, Tespectively. In their study of
Ni ¢oCro.11, Schweika and Haubold®” were able to extract the
Ni-Ni displacement parameter because the ratio of the ey;n;
and €c,.c, weight factors was large, ~25, and they could,
therefore, neglect ec.c,. In our case the ey;.n; and eppp;
weight factors are almost identical and we cannot use an
analogous approach. If the size disparity between Ni and Pt
dominates the tendency to ordering as Pinski er al.® suggest,
and arguing that ep,_p, is positive and ey;_n; negative because
a Pt atom is about 11% larger than a Ni atom, we find that
ep.p.>>0.0125. The L1, ordered phase consists of alternating
planes of Ni and Pt. The c/a ratio is 0.94 which means that
the nearest neighbor Ni-Pt distance is smaller than the near-

est neighbor distance between like atoms (within the planes).
Hence, if the short-range order in our NiPt solid solution
tends toward the ordered phase one might expect that the
Ni-Ni and Pt-Pt nearest neighbor displacements would both
be positive and the Ni-Pt nearest neighbor displacement
would be negative. A solution for the disordered phase, simi-
lar to that of the ordered phase, is possible, but this would
require that ey;n; be positive even though the size effect
dominates the tendency to ordering. Our x-ray study of a flat
extended-face normal Ni s,Ptj4¢ crystal should resolve the
situation.

The SE intensity, shown in Fig. 4, peaks at a larger Q than
the SRO, whose diffuse peaks it modulates, and goes below
the Laue value near the Bragg peak. This is mainly due to the
positive value of the measured y(1) and the negative value of
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FIG. 5. 62Ni0'52Pt0.48 EPIs obtained using the KCM theory. Note
the enhanced values at (400), (600), and (444) (which is negative).
See the caption to Table I.
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TABLE III. 62Ni0'52PtO‘48 effective pair interaction potentials
(EPIs), using the KCM theory. The values of V(/ 0 0), underlined,
appear to be consistently larger than simple monotonic decay would
suggest. See the caption to Table 1.

Shell number n Shell index Imn VECM (meV)
0 000 46.42(463)
1 110 26.66(105)
2 200 -5.32(92)
3 211 1.49(99)
4 220 -3.54(0)
5 310 —-0.84(125)
6 222 -0.28(93)
7 321 0.12(99)
8 400 2.65(117)
9 330 0.00(0)
10 411 0.26(180)
11 420 -1.75(104)

12 332 0.03(0)
13 422 0.39(81)
14 510 —-0.82(74)
15 413 —-0.33(139)
16 521 0.43(102)
17 440 0.79(149)
18 530 —-0.49(028)
19 433 0.03(0)
20 600 2.97(70)
21 442 1.09(39)
22 611 —-0.51(148)
23 532 -0.28(192)
24 620 —1.24(89)
25 541 -0.47(0)
26 622 0.20(238)
27 631 0.47(168)
28 444 ~1.98(69)
29 710 0.74(0)
30 550 1.23(133)
31 543 1.04(19)
32 640 -1.43(2)
33 721 0.06(0)
34 552 —-0.60(109)
35 633 —-0.99(110)

a(1). Figure 4 reflects this fact since the SRO contribution
has been subtracted.

Using the SRO parameters from Table I, we calculated the
EPIs using the KCM method (Fig. 5 and Table III), and using
the GEM method for the first three neighbors (Table IV). The
largest interactions are given by the first four neighbors and
the ordering condition [V(1)>1 meV, V(2)<1 meV] lies
within the stability regime for L1, in the diagram of V(1) vs
V(2).3 The L1, structure below T, is therefore satisfied.
V(0) can be understood as a self-energy, as described by
Masanskii et al.** The difference between the two methods is

PHYSICAL REVIEW B 74, 104115 (2006)

TABLE IV. 62Ni0'52Pt0_48 effective pair interaction potentials
(EPIs), using the KCM theory and the KCM theory with the GEM
correction.

Shell number n ~ Shell index Imn VKM (meV)  VOEM (meV)
110 26.66(105) 26.55(115)

2 200 2532(92)  —-5.31(93)

3 211 1.49(99) 1.49(99)

small because the concentration is near 50%. The KCM
method requires that |a(n)| <1 and |V(n)| <kpT and in this
case, where the fictive temperature kz7=58.51 meV, we can
expect a slight departure for V(1) from the exact value.
Reinhard and Moss?> have shown that near the equiatomic
composition (¢=0.50), the KCM method is a very good ap-
proximation for the EPIs when compared with the “exact”
IMC method; furthermore the GEM extension, namely the
correction using Eq. (18), is almost zero for this concentra-
tion, giving values nearly identical to the KCM values. An
interesting observation, clearly evident in Table III, is that in
the (100) direction V(n) is large as compared with neighbor-
ing values. This is not surprising, given the shape of the SRO

contours in Fig. 1 in the [110] plane; V(28) is also anoma-
lous as is «(28). In Fig. 6 we present reconstructed and ex-
perimental maps of V(q) in the [001] plane. Clearly I(q) is
very weak at the Bragg points where V(q) peaks but these
maps are nonetheless quite similar, and provide important
information for theoretical purposes. The apparent weak
lobes in the (110) direction are clearly not in the experimen-
tal data which represents the total /(q) minus the recon-
structed SE intensity.

From a metallurgical point of view, the atom size dispar-
ity (called “size effect” by Pinski et al.,® but not to be con-
fused with its manifestation in the diffuse scattering) can be
related to its direct effect on electronic structure and order-
ing, and thereby to strain energy. In a “ball and spring” sys-
tem, the strain energy yields a tendency toward unlike near-
est neighbors (ordering), based solely on minimizing
packing, which does not include any electronic effects. More
generally, the effects of atom “size” on the electronic struc-
ture can either lead to ordering or to phase segregation.*® In
this case, the atom size disparity is reflected in our data by
the small asymmetry due to direct SE scattering and to the
same (u?) for both Ni and Pt. NiPt orders, in agreement with
Pinski and co-workers.*”#3

V. THE NATURAL ABUNDANCE CRYSTAL

Scattering in the [001] and [110] planes of a natural abun-
dance Nig5,Ptg4g crystal has also been studied using the

DCS. The scattering map for the [110] plane (Fig. 7) is
dominated by Bragg scattering and Huang diffuse scattering
(HDS). The scattering contrast is very small so that SRO and
SE scattering are essentially absent, as discussed in Sec. II.

The HDS is due to the asymptotic displacement field aris-
ing from an atom of a different size in its host?82%:31:4950 and
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Reconstruction

PHYSICAL REVIEW B 74, 104115 (2006)

Experiment

x3<d

FIG. 6. (Color) ®®Ni, s,Pt) 45 V(q) reconstructed and experimental data for the [001] plane, i.e., the (4k0) plane. The experimental data
were obtained by subtracting the SE scattering from the original data, and then using Eq. (17). What appear to be weak (110) lobes in the
reconstructed data are simply not present in the experimental map.

corresponds to the dominant elastic term of the QDS dis-
cussed in Sec. II. When such a solute atom is present in an
otherwise pure crystal, it causes the surrounding atoms to be
displaced from their average lattice positions defined by the
lattice parameter(s), and the far-field or asymptotic value of
this intensity appears in the immediate vicinity of the Bragg
peaks, falling off as ¢=2 as does the TDS. The HDS, strictly
valid for ¢, <1, is given by

10000.0

10.0

1.0

35 IR R T T T B

05 00 05 10 15 20 25

0.1

FIG. 7. (Color) Experimental data for the natural abundance
Nig 55Pto g crystal in the [110] plane, i.e., the (khl) plane. The scale
is logarithmic, in arbitrary units. The SRO and SE are almost zero
and the TDS was removed in the normal way. Only the Bragg
scattering and HDS remain. The HDS [«|G -t(q)|*] is clearly en-
hanced in certain directions.

Iups(Q) ~ |eaba + cpbp*|G - T(q)|?, (21)

where T(q) is the Fourier transform of the displacement field.
The HDS is thus proportional to the number of solute atoms.
In concentrated alloys, such as ours, this formalism still ap-
plies due to the linear superposition of the displacement
fields. Unlike the SRO and SE, the HDS is clearly propor-
tional to the square of the mean lattice scattering as is the
one-phonon TDS;*?3! it is ~0 for the null-matrix composi-
tion.

The HDS shows a preferential orientation close to the
(111) direction for the (002) and (113) peaks, and to the
(110) direction for the (220) peak. The Huang scattering
analysis requires considerable effort in order to evaluate the
elastic dipole tensor matrix (the Kanzaki forces), given the
elastic constants or response function of the crystal. None-
theless, Fig. 7 indicates a somewhat softer longitudinal elas-
tic response along (110) and related responses given by
|G -¥(q)|?> along other directions: i.e., transverse softness in
(111) directions at the (111), (113), (002), and (222) peaks.
Work is required on this aspect of our measurements, and
this is in progress.

VI. CONCLUSIONS

In order to obtain information regarding the nature of the
NiPt phase stability, we performed a neutron experiment on a
“null-matrix” single crystal to measure the separate occupa-
tional probabilities (correlations) given by the SRO param-
eters and related to the EPIs, and the SE parameters whose
values will provide us, with one additional experiment, the
individual pair-wise displacements of the atomic species
from their average distances given by the lattice parameter.

104115-9



RODRIGUEZ et al.

The scans show only SE and SRO scattering with tiny Bragg
peaks due to a very slight concentration mismatch, which
were used to align the sample, but with no contribution from
the TDS or HDS.

The SRO parameters, which are related to the concen-
tration-correlation functions, indicate an ordering tendency
similar to the low temperature L1, phase. The SE param-
eters, which depend on the concentration-displacement cor-
relations, give us linear combinations of the species-depend-
ent displacements for each shell. Individual displacement
values will be obtained from our x-ray study. Nevertheless,
considering that the size of the atoms dominates the ordering
tendency we find that for first neighbors the Pt-Pt displace-
ment, which is assumed to be positive (with the Ni-Ni dis-
placement negative), is greater than 1.25% of the magnitude
of the average nearest neighbor distance and the Ni-Pt dis-
placement is almost certainly negative.

Pinski et al.® found that the electronic states induced by
size disparity and due to bandwidth differences (related to
off-diagonal disorder in tight-binding theory), are essentially
responsible for ordering, while electronegativity does not
play a role; notably, spin-orbit coupling contributes nothing
due to its relative magnitude. For completeness, the tight-
binding methods describe the size-induced strain interactions
as off-diagonal disorder, but do not contain the hybridization
(hence correct off-diagonal disorder) that occurs in many
systems, and thus obscures the physics; such hybridization is
missing because it is not obtained from any usual method to
get effective off-diagonal parameters taken from the ele-
ments, such as their average or geometric mean, but can be
obtained from first-principles calculated phase shifts.>?

The normal crystal shows essentially zero neutron con-
trast for SRO and SE scattering, but very clear HDS in pref-
erential directions. The HDS analysis using these data re-

PHYSICAL REVIEW B 74, 104115 (2006)

mains to be performed. In the present null-matrix experi-
ment, using the KCM and GEM theories, we obtained EPIs
with essentially no difference between the two methods, be-
cause the concentration is nearly 50%, showing considerable
interactions mainly for the first four neighbors; the rest
decay rapidly to zero. The ratios of V(2)/V(1)=-0.2 and
V(3)/V(1)=0.06 agree with the ordered ground state struc-
ture predicted by Clapp and Moss*3 for a fcc crystal, where
the minima of V(q) occur at (100) and equivalent points. A
numerical comparison of these results, both with electronic
structure theory and computational simulations, should yield
considerable information on the NiPt phase stability prob-
lem, especially after our companion x-ray experiment is con-
cluded.
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